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THE SYNTHESIS OF METEOROID DISTRIBUTIONS FROM 
MONOENERGETIC MONODIRECTIONAL KERNELS 

SUMMARY 

A s  a logical extension from previous papers by the authors, a general 
method for calculation of the meteoric flux at any finite point, given an arbitrary 
spectrum at infinity of broad meteoric streams, is derived. 
explicitly applied, obtaining plots of relative flux versus angle for a series of 
examples dealing with monoenergetic isotropic distributions, limited monoenergetic 
isotropic distributions and transformed isotropic cases -- that is, apparent flux 
a s  seen about an attractive center ( for  example, Earth)  moving relative to a 
system in which the distribution is isotropic at  infinity. A mathematical appendix 
outlining the computational methods employed is included. 

This formalism is 

SECTION I. INTRODUCTION 

The effect of a gravitational center on an infinite parallel stream and an 
isotropic distribution of meteoroids has been studied in detail by Shelton, Stern, 
and Hale [I] , and by Hale and Wright [ 2, 31. 
investigate a process by which flux patterns obtained from the parallel stream 
treatment can be superimposed to approximate any arbitrary distribution of micro- 
meteoroids in speed and direction, and to apply this process to special cases to 
illustrate the behavior of possible meteoroid distributions in the vicinity of the 
Earth. 

The purpose of this study is to 

Define a velocity space wherein each particle represents a meteoric stream 
of unit flux at infinity. Each stream need not be of infinite extent or persist 
eternally; however, it is convenient to regard these s t reams as being of such 
breadth and-l,ocation to include both the origin (,,that is, the center ) and some com- 
mon point r sufficiently far from the origin that the flux patterns there are es- 
sentially unaisturbed by the attractive center. 

A t  7 let the s t reams be specified by a density N (vm, 0 , a) in a stream 

are the usual angular coordinates which, along with 

0 velocity space, where vm is the speed of the stream at infinity (and approximately 
the speed at < ) ; 0 and 



vco, define a velocity vector. However, one should note that 0 and * define the 
direction from which the s t ream comes. Within an arbitrarily small element of 
solid angle, sin 
of speeds between vco and v, + Avco is 

N(v,, , cp) V: sin ~ A O A C D  A V ~  , 

and the flux at r due to these streams is 

4 0 4iD in  velocity space, the number of almost parallel streams 

4 

0 

These s t reams at any other point ( r ,  O f ) ,  where r << r and 8' is defined 
0 

to be zero in the direction ( 0, a ) ,  will give rise to a flux 

where f(vCO, r, O f )  is the flux field pattern for  a unit flux at infinity derived in the 
first three references. 

Generally, there may be many s t reams simultaneously active in different 

ro is simply defined as a point at a great distance 
The total flux F at a point ( r ,  8 ,  4) can thus 

directions. 
(0, @) , the s t ream's  radiant. 
in  the real  space direction (0 ,  a) .  
be formally expressed as 

For  each infinitely b-road s t ream, one can define a ro in te rms  of 

- 

vCO 

s 
0 

J' 
cp 

f (vCO,  r, e ' )  v3 N(vW, 0, i D )  sin 0 d e  d @ dv , 
co 03 

where e' is the angle between the directions (0, @) and ( 8 ,  @) by definition. 

This formalism can be applied to s t reams of finite breadth (pencils) ,  and 
all of the pattern details for any one stream as previously developed [ I ,  2 ,  31 
including isoflux and isodensity contours will be valid, provided that the region 
of interest lies within the volume swept through by the pencils. 
boundary of a pencil, o r  finite stream, its contribution to the total flux and density 
goes abruptly to zero. 

Of course at the 

A uniform monoenergetic particle stream monodirectional at infinity, 
flowing by a disturbing gravitational center, develops a flux pattern which is 
axially symmetric about a line through the gravitational center and in the original 
.stream direction. 
f ( v i ,  r, e ! ) ,  where r is the distance from the origin, and the angle 8' is meas- 
ured from the upstream symmetry axis. 

The flux pattern has been expressed [ i , 2 , 3 ]  in the form 

2 



SECTION II. THE EXPLICIT FORM OF f(voo, r ,  0 ' )  

Consider a parallel stream from the direction defined by o and @, as shown in 
Figure I, and an arbitrary point P at which the particle flux is to be determined. 
of the axial symmetry of the stream disturbance, the flux at P depends only on the dis- 
tance from the origin and the angle 8'. The cosine of 8' can be computed by taking the 
scalar product of two unit vectors, one along the symmetry axis and the other in the 
direction of the radius vector drawn from the origin to the point P. 

Because 

Thus, 

where 

h A 0 A 
k' 5 i sin 0 cos @ + J s in  o sin @ + k cos 0 
A A A A 
r E i sin e cos c$ + j sin e sin c$ + k cos e ,  

o r  

cos e '  = sin o sin e cos ( @ - c$) ,+ cos o cos e. 

In equations 2 and 3,  i, j ,  k are unit vectors along the x, y, z axes, respectively. 
A A A  

Imagine, as in Figure 2,  a parallel stream of meteoroids approaching a gravita- 
tional center E. 
per  second crossing an annular s t r ip  between a and a + Aa,  where a is the impact para- 
meter,  is given by 2 n a A a. If these particles impact on a sphere of radius r, they will  
fall on a zone whose area is 2 n 9 .sin 8' A 8'. Since particles are conserved, the rate at 
which particles c ros s  the two surfaces a r e  equal, and w e  can wrfte:  

If the flux in the undisturbed stream is unity, the number of particles 

2 n a  A a  = f  (v- ,  r ,  0') 2 n r 2  s i n e '  cos  Q! AQ' , ( 4) 

where f(v,, r, 0 ' )  is the flux at the spherical surface and OL is the angle between the 
inward radius vector and particle direction measured positive counterclockwise. 
for  f ( v m ,  r ,  e ' ) ,  w e  have 

Solving 

f (vW,  r, e l )  = rZ sin a e '  cos Q (+,)r 
Y 

where w e  have gone to differential form on the basis of the relationship between a, the 
impact parameter, and the variables describing the motion of the particles in a gravita- 
tional field. It is possible, in an  analogous manner using a conical zone (that is, surface 

3 
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FIGURE I. GEOMETRY FOR THE FLUX CALCULATIONS. 

IS DESIRED. 

P IS THE POINT, 
LOCATED BY r, e, AND +, AT WHICH THE FLUX (particles/m2 sec) 



FIGURE 2. GEOMETRY FOR PARALLEL STREAM FLUX PATTERN CALCULATION 



defined by 8' = constant, r = r and r = r + Ar) , to express the flux pattern function a s  

- a 

1-2 sin e' cos a! 
. .  + 

- 

a 
r sin 8' sin a! 

f ( v m ,  r, el) = 

Y 

The simple situation of Figure 2,is complicated by the fact that the flux at a point may be 
composed of two or more streams or be intercepted by a finite gravitational center [ 31 . 

Following the work of Hale and Wright [2 ,  31 and noting equation 5 ,  w e  w r i t e  

a 

1-2 sin e' cos a! 

+ 
+ 

f(vco, r, e l )  = 

where the f i r s t  t e rm is direct flux (approaching perigee), the second is scattered flux 
(receding from perigee), and 

r2 y2 sin2 e' + 4 yr ( i -cos  e ' )  ( 8 )  
f 1 

n 

where vco is the speed of the stream at large distances, y is the gravitational constant, and 
M is the mass  of the gravitational center. 
vanish if the stream intersects the Earth before arriving at the point ( r, 8,  4 ) .  From 
simple angular momentum considerations [ i, 2, '31 one can show that the first te rm of 
equation 7 is nonzero if either of the following conditions is satisfied: 

Either of the two t e rms  in equation 7 may 

1 
a > R [ 1 + 2/yR] 2- (12) 1- 

6 



or  

where 

- -1 
0 H  = cos [-l/(l +yR)I 

and R is the radius of the finite attractive center. 

The second term of equation 7 is nonzero only if 

SECTION III. SINGULARITIES I N  f ( v m ,  r, 0')  

The denominators of the terms in equation 7 may go to zero as  a result of geo- 
metric properties despite the well-behaved nature of the physical process. In particular, 
we  know that f (vm, r, 0') is  we l l  defined for 0'  equal to zero and a + equal to 7r/2. When 
0' equals zero, the first term of equation 7 is replaced by 

[ ry + '2 yr  Lim f ( v m ,  r, e ' )  = 
0 '4 J Y 

and the second term is removed by inequality of equation 14. 

The singularity for a! equal to 7r/2 is easily removed by using equation 6 rather 
t equation 5. A tedious evaluabon yields 

which is used for  machine computations if cos a!+ becomes too small for accurate compu- 
tation of f(v,, r, 0') by equation 5. 

The singularity at 8' = 7r has 'a strong physical basis. I t  can be shown, however, 
that the number of particles per unit time crossing a small disc located on and normal to 
the symmetry axis is finite and, in the l imit-as the radius of the disc approaches zero, is 
propdrtional to the radius. If the distribution in direction is continuous and finite rather 
than discrete, it follows that there can be no point singularities in the flux pattern. If the 
planets are viewed a s  scattering centers for the meteoroids, it is likely that the meteoroid 

7 



distribution in velocity is piecewise continuous and that the unusual focussing effects 
demonstrated [ 2, 31 for broad persistent parallel s t reams are highly unlikely. - 

SECTION IV. THE MONOENERGE TIC ISOTROPIC DISTRIBUTION 

If the meteoric streams are traveling in  all directions with equal probability and 
all have the same speed v,, the unnormalized density distribution function may be 
written as 

The particle flux F at infinity is therefore given by 

F ( m )  = JJs vA3 6 (v - v:) sin 0 d 0 d+dv' = 4 a v 2 ,  
m 00 

so that the normalized density distribution function (one that will yield unit flux) for the 
isotropic case is 

The substitution of this distribution function into equation 1 yields 

FO, 8, $1 = 

p = l  +=27r 

- ' s s  f(v,, r, 6 ' )  d p d +, 
47r p = - i  + . = o  

where use has been made of the definition 

p = cos 0 

Since the isotropic case can be treated in closed form [ 1, 41 , the evaluation of this inte- 
gral provides a check on the machine computation and on the method of handling the singu- 
lar point at 6' = 7r. Table I shows a comparison between the machine computation of the 
integral of equation 20 and the results obtained by completely analytical methods [ I] . 

SECTION V. LIMITED MONOENERGETIC ISOTROPIC DISTRIBUTIONS 

If the distribution in direction is isotropic except for some forbidden cones of 
directions, equation 20 may still be used after modifying the normalization factor and 
the limits of integration. 
that if 

If the meteoroid flux is restricted to a cone of directions such 

A 5 p 5 1, N (v,, p, @ )  

- i s p ' A ,  N = O  

= k 6 (v, - v:) 

8 
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TABLE I 

COMPARISON OF ISOTROPIC FLUX COMPUTED BY TWO METHODS 

Va = l o  km/sec Va> =40 km/sec 

MACH IN E CO M PUTATl ON MACHI NE COMPUTATION 
- AN A LY TI C I ANALYTIC 
R , detector at 30" detector a t  90' detector a t  30" 1 detector a t  90" 

,5387 I , ,5446 ~ 1- ,9121 L 9099 
1,1131 1 , l  132 
1.5224 ' 1.51 6 4  

1 2.0 1.4592 1 1.4625 I 1.4558 12.0 ,9659 i ,9664 1 .9664 1 
I .3444 1.3407 I 3.0 1 .9947 I .9935 I 9931 1 

14.0 1.2707 ~ 1.2714 I 1.2680 14.0 1 1,0020 ~ 1.0023 I 1.0006 I 
1 5.0 1 1.2225 1 1,2229 1 1.2201 I5 ,O  1 1.0044 1 1,0040 1 1.0051 1 

I I -  I I . I I 



k can be determined by substitution into equation 1 and setting f (  r, e ,  @) = 1 for r = 
(that is, f(v,, m y  e ' ) =  I). The normalized result  is 

The integral of equation 1 becomes 

Figures 3 through 6 illustrate this for  the limited polar isotropic case,  for  A = 0 ( that is ,  

0" 5 0 5 3 0 " ) ,  v, = 10 km/sec; and A = 6 / 2 ,  v, = 40 km/sec. The cases show 
that the anistropy in the velocity distribution has introducted angular variations into the 
flux patterns. 

= 10 km/sec; A = 0 ,  v, = 4 0  km/sec; A = d 3 / 2  (that is, v, 0" 5 0 5 90" ) , 

If the velocity distribution in solid angle in velocity space is a spherical zone cen- 
tered about the circle  defined by 0 = 7r/2 and bounded by 0 = 7r/2 ~t cos-' B, .the limited 
equatorial isotropic case, the normalized density distribution may be written as 

f(v,, r, e ' )  d p  d@. 
47rB F ( r ,  8 ,  = 

and the flux integral becomes 

Figures 7 through 10 illustrate the flux distributions arising for B = 0.5 (that is, 
60" 5 0 5 120" ) v, = 10 km/sec; B = 0.5, v, = 40 km/sec; B = ( 2  - &)/4 (that is, 
869 17 I 0 5 93". 83 ) ,  v, = 10 km/sec; B = ( 2  - d3)/4, v, = 40 km/sec. The solid 
angles subtended by the allowable directions are the same here as in the previous ex- 
amples, (that is, equation 23) being 2 7r and 2 7-r (1  - d3/2)  for both examples. A com- 
parison of the limited polar isotropic cases with their limited equatorial isotropic cases 
analogous (that is, same vm and same allowable magnitudes of solid angle for  stream 

10 



I .7 

1.5 

1.3 
n 

-8- 

$ L, 1 . 1  
W 

LL 

,9 

.7 

I I I 

~ R = 6.528 x IO6 meters U I 
I 

I -=2 -3// 
-\ I R 

.J 

0 20 40 60 80 100 I20 I40 I60 I80 
8 (degrees) 

FIGURE 3. METEOROID FLUX FOR THE LIMITED POLAR ISOTROPIC CASE WITH 
v, = 10 km/sec, 0 "  5 0 I go", 0" 5 9 5 360" AND Cp = 0", ASSUMING 
UNIT FLUX A T  INFINITY. 



1.0 

.8 

,4 

.2 

0 

8 (degrees) 

FIGURE 4. METEOROID FLUX FOR THE LIMITED POLAR ISOTROPIC CASE WITH 
vw = 40 km/sec, 0" 5 0 5 90°, 0" 5 9 5 360" AND @ = O o ,  ASSUMING 
UNIT FLUX A T  INFINITY. 



E?%- 
- =  

I I I I I l.u I 

CI 
w 

I 1 r - = 2  - 
R -  R = I 6.528 x I O 6  meters 

?4 L, 

2.- , 

--3 1.6 

t-- 
-8 4 I 
0 

I 
1 

- = 3  

0 20 40 60 80 100 120 I4 0 I60 180 

6 (degrees)  

FIGURE 5. METEOROID FLUX FOR THE LIMITED POLAR ISOTROPIC CASE WITH 
v, = 10 km/sec, 0" 9 0 9 30°, 0" 5 @ 5 2 T, AND @ = O", ASSUMING 
UNIT FLUX AT INFINITY. 



I I 

0 20 40 60 80 IO0 
8 (degrees) 

I20 140 I60 I80 

FIGURE 6. METEOROID FLUX FOR THE LIMITED POLAR ISOTROPIC CASE WITH 
= 40 km/sec, 0" 5 0 5 30", 0" 5 VCO 

UNIT FLUX A T  INFINITY. 
2 7ry AND $I = O", ASSUMING 



I ,7 

I .6 

I .5 

- 1.4 -e- 
m .. 
L 
L. 
Y 

LL 1.3 

I .2 

1 . 1  

8 (degrees) 

FIGURE 7. METEOROID FLUX FOR THE LIMITED EQUATORIAL ISOTROPIC CASE WITH 
vm = 10 km/sec, 60" 5 0 5 120", 0" 5 @ 5 360", AND @ = 0", ASSUMING 
UNIT FLUX AT INFINITY. 



1.2 

1 . 1  

I .o 

.9 
n 

s 
0 

c. - 
2 0  L L '  

.7 

.6 

90 I20 I50 180 210 240 270 30 60 5 ' 0  
8 (degrees) 

FIGURE 8. METEOROID FLUX FOR THE LIMITED EQUATORIAL ISOTROPIC CASE WITH 
vm = 40 km/sec, 60" 5 0 5 120", 0" 5 @ 5 360" AND @ = 0 " ,  ASSUMING 
UNIT FLUX A T  INFINITY. 



I 

I 
R = 6.528 x IO6 meters 

I X  

50 
8 (degrees) 

180 

FIGURE 9. METEOROID FLUX FOR THE LIMITED EQUATORIAL ISOTROPIC CASE WITH 
v, = 10 km/sec, 86: 17 5 0 5 93P83, 0" 5 @ 5 360" AND $J = 0", ASSUMING 
UNIT FLUX AT INFINITY. 



1.2 

I ,  I 

I ,o 

8 (degrees) 

FIGURE 10. METEOROID FLUX FOR THE LIMITED EQUATORIAL ISOTROPIC CASE WITH 
v, = 40 km/sec, 86: 17 5 0 5 934 83, 0" 5 @ 5 360" AND $ = O o ,  ASSUMING 
UNIT FLUX A T  INFINITY. 



incidence--for example , compare Figure 3 with Figure 7) reveals profound differences 
in the flux patterns. 
the distribution. 

In all cases ,  polar angles are measured from the symmetry axis of 

SECTION VI. THE TRANSFORMED ISOTROPIC CASE 

In a given coordinate system, a normalized uniform monoenergetic isotropic dis- 
tribution may be expressed as 

- 4  

N ( r ,  v) = 6 [v  - v 3 /4 T v: (of eq. 19). 
03 

In a second coordinate system containing the Earth and moving with velocity 7 relative to 
this first system, the distribution has the form 

which is the primed analogue of equation 126 in Reference [ 11 , where the variables are 
related, as shown in Figure 11, by the equation 

4 -  - 
v = v' 4- v . 

Note that equation 27 is not normalized in the primed (the moving) system. The 
undisturbed flux F ( m) has been cotnputed from the distribution of equation 27 to be 

n 

(Refer  to eqs. 138 and 139 in Ref. [ I ] .  ) 

The flux near a disturbing center can be written, by virtue of equations 1, 27, and 
29 as 

where one should note the division by F ( w )  required for normalization in the moving 
system, and realize that r,  8 in F (  r, e, +) now refer to the moving system. In order  to 
correctly perform the 6 function integration, w e  need to find the differential of v (v' , p' ) . 
From equation 28 and Figure 1 I 

19 



= cos e 
u' = cos el 

X 

FIGURE 11. THE VELOCITY ADDITION LAW 
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1 - 
v = (v" + V2 + 2v' V pl ) 

dv = (v' + Vp ' )  dV'/(vf2 + V2 + 2v' Vp') 2 - .  

and 
1 

Equation 31 is solved for v' by the quadratic formula to  eliminate v' from equation 32, 
obtaining 

L 
v' = - V p ' *  (V2pf2 + v 2  - V2) . (33) 

Substituting into equation 32, one finds 

Using this information, with v = v,, the integral of equation 30 can be reduced to 

f(v ' ,  r, 0') vk3 dp'  d + '  
9 (35) _ -  voo 

1 
(V2$2 + v2, - V2) 

J' s i 
47r9 F ( a )  ~ ( r ,  e ,  $4 = 

Og 

--L 4 -  

where v: E v' (v,). A t  large distances f(v,, r ,  e ' )  - I and the integral over (p' yields 
2 n; thus the undisturbed flux is given by 

which reduces to equation 29. 
reality and p' is integrated between the limits of -1 and +i. 
for  both signs is necessary over the range -1 < p' < - d l  - (v  /V)2 . 
of pcL' yields real positive v' values. The minus sign for  every p' provides the contribution 
from the forward hemisphere of directions ( p  > 0) , and the plus sign the contribution from 
the aft hemisphere ( p  < 0) to the distribution in the primed system. 

For  V < v,, only the plus sign corresponds to physical 
For  V > v,, an integration 

~~ 

Only this range 
cg 

By dividing the flux integral by F ( w )  , we have required equation 35 to approach 
unity at large distances. Furthermore, F ( r, e ,  @) must approach the parallel s t ream 
case as V/v, becomes large and the pure isotropic case as V/v, becomes small. 

Figures 12 through 15 show the transformed isotropic cases fo r  v, = 10 km/sec, 
V = 30 km/sec; v, = 40 km/sec, V = 30 km/sec; V = 10 km/sec, v, = 40 km/sec; and 
V = 60 km/sec, v, = 10 km/sec. 
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A discussion of the computation method used in obtaining these results is given in 
an appendix. 

SECTION VII. CONCLUSIONS 

These calculations, based on rather simple assumptions for the distribution of 
meteoroids with respect to direction and energy, show that there a r e  not likely to be any 
sensational focussing effects. However, highly anisotropic distributions result in radial 
and angular dependences which should be easily observable, either by radar  o r  optical 
studies of impacts on the atmosphere, o r  by a large micrometeoroid satellite in a polar 
orbit, o r  in a reasonably eccentric orbit. 

The transformed isotropic case is interesting in that it can be used to predict 
flux distributions in the solar  system for  the case in which the sun moves through a cloud 
of particles which have some velocity distribution relative to their center of mass. In 
the limit as the particle speed in their center of mass  system goes to zero, the trans- 
formed isotropic distribution approaches that of the parallel stream. 
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A P P E NDIX 

Numerical Calculations 

The numerical evaluation of the integrals in equations 35 and 36 poses special 
problems in some cases. In particular, when v < V, one obtains 

I 
2 r v 2  F(w) 

00 s =- i  6, s = 0 

and F(W) , the undisturbed flux at large distances, is computed by letting f 3 I. 
problems considered in this paper possess azimuthal symmetry, the range of the 
@-integration can be taken as 0 to - 7 ~  and the value of the integral doubled, as shown. In 
each case,  the integral is to be performedtwice, once with, the positive sign and once with 
the negative sign in the integrand; and the two results a r e  to be summed. 

Since all 

The integral in equation A I  is improper since the denominator of the integrand is 
zero when pf attains the value of its upper limit. In order to estimate the value of this 
integral, first note that equation A I  can be written in the simplified notation 

o r  

1 

and 
v2 - v2 

V2 
m 

a2 = 

where the dependence on r, 0 has been suppressed, the prime has  been dropped from ply 
and the dependence on p has been expressed by the functioii g. 

27 



Each integral in equation A3 can be replaced by the sum of two integrals, neither 
of which is improper, 

I - ( a + € )  1 
2 3  2 T - 3  

g ( P ) r - P * ( P 2 - a  1 dp F S ( d r - P * ( P 2 - a 2 )  1 d p =  
I I p = - i  - 

( p 2  - a 2 )  2 

sa 
p = -i 

(p2  - a 2 )  

+ Q sa 

For sufficiently small E ,  the function g can be assumed not to vary significantly 
over the range - (a+€) to -a; that is, g( p )  can be treated as a constant and cancelled 
from the expression defining Q. 

To estimate the value of Q, the numerator and denominator can now be expanded. 
Thus, for example, 

where Qn is the numerator of the right hand side of equation A5, from which g( p) has been 
cancelled. 

Each of these integrals can be treated separately; those which cannot be readily 

. A s  an example 

I - 
integrated in closed form can be approximated in a power series in E 

of the latter method of approximation, consider the evaluation of 
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Let 

1 5  5 1  - iia a'i- 3 3  E T +  1 5 4 3  . h E 2  ) 

5 
12 32 M 1$2 a 2  e 2  + 

i- 
where equation A i i  is accurate through te rms  of order  E . 

Proceeding in this manner, one can show that 

where numerator and denominator are accurate through te rms  of order  c2. 

In order  to test the validity of this approach to evaluating the improper integral 
( A i ) ,  the normalized undisturbed flux F, can be computed and the results compared with 
the known true value of unity. 
calculations. 

Table A i  summarizes the results of some typical test 
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3e tector 
Velocity 
[ km/sec) 

15 

30 

60 

. .  

Velocity at 
Infinity 
(km/sec) -. 

10 

i o  

10 

Table A i  

Test Calculations of Undisturbed Flux 
__  . 

a 

.74536 

.94281 

.98601 

a -  
€ 

.00264 

.00719 

. 00299 

Computed 
. -  . F (03) . -  

.9952 

9994 

.9998 

Fraction of 
F ( m )  due to 
Contribution 
from -(a+€ ) to :a - 

- 

.0461 

.3061 

.4473 

In evaluating the integrals discussed in this paper on the IBM 7094, trial calcu- 
lations were first performed with different mesh sizes using Simpson's rule and the 
Gaussian quadrature method. Since machine running time is essentially a linear function 
of the number of times the integrand must be evaluated, it is desirable to keep this 
number as low as possible consistent with required accuracy. It w a s  found that very good 
results w e r e  obtained when the range of each variable of integration w a s  divided into a 
number of equal subintervals and the value of the integral on each subinterval obtained 
using a four-point Gaussian routine. In general the +-integration, for which the range in 
every case w a s  0 to 7r, w a s  performed using 8 subintervals (32 mesh points). 
integration w a s  performed with the same number for problems involving the full range 
-i to i and with a number proportionately reduced when the range w a s  restricted. 

The p- 
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